
Symbolic Logic 4

We are now moving beyond or rather within the sentence. The truth-functional logic we have met 
took sentences as its units, but the validity or otherwise of a lot of reasoning depends on how 
components of sentences behave.

In what is called first-order logic we distinguish the following elements within sentences:

• Names for singular objects of reference

• Predicates, that ascribe properties or relations to singular objects of reference

• Variables that can replace names for singular objects of reference

• Quantifiers that can link up with variables for singular objects of reference to say how many 
such objects have a particular predicate

In ordinary English these four categories are typically expressed by the following types of 
expressions:

• Names for singular objects of reference – proper names (Socrates, Bridgetown). We can 
afford to be fairly lax about what counts as an object of reference, thus Hodges mentions the 
referents of four types of phrase (proper names, non-count nouns, singular personal 
pronouns, and definite descriptions)1

• Predicates – verbal phrases (is wise, … loves …, swims)

• Variables – some uses of pronouns function like variables, but the closer analogue is in 
mathematics, where variables are ubiquitous: x (y – z) = (x y) – (x z).

• Quantifiers – these don’t have exact analogues, but they express what English says by using 
all, every, some, ...

You can see that in one sense the main addition is the notion of names, since variables and 
quantifiers relate to that category as well. A more complicated logic is produced if one adds 
variables and quantifiers related to predicates: this is called second-order logic. We won’t be 
dealing with that.

Notation

We continue to use all the notation for the truth-functional mini-language. In addition we have the 
following:

For names we use small letters, usually from the beginning of the alphabet, though you can use ones 
that remind you of who is being named if you want, so a or s may be used for Socrates. These can 
be called constants, since on any particular occasion they pick out the same individuals each time.

1 His examples of non-count nouns include butter, poverty, moonlight; while definite descriptions are singular noun 
phrases beginning with the, this, that, my, his, Birmingham’s, etc. What we exclude in this way are (a) plural noun 
phrases e.g., my knees, (b) expressions with the English equivalents of quantifiers, and (c) indefinite descriptions, a 
cat. (We will come back to definite descriptions later.)
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For predicates, we tend to use two sets of capital letters: F, G, .. for one-place predicates (that 
require only one name to make a complete statement), and R, Q, S, .. for relational predicates (that 
require more than one name to make a complete sentence).

To put a name and a predicate together to make a sentence, we put the predicate first: so Fa may 
symbolise Fred smokes, or Rab may symbolise Alfred loves Betty.

For name-variables we use small letters from the end of the alphabet, x, y, … The variables in 
sentences that are attached to predicates but without any quantifiers linking to them are called free.

In first-order logic we usually consider only two quantifiers: the universal quantifier, ∀, read for 
all, and the existential quantifier, , read, ∃ for at least one (or often for some, but understood to be 
true if one or more of the names that replace the variable it binds satisfies the predicate in question). 
Quantifiers are followed by a variable which typically links up to the same variable in the following 
sentence; when it does so, that variable is said to be bound by the quantifier. So, if F stands for 
swims, then xFx, says ∃ something swims, and the x in Fx is bound by the quantifier expression..

Semantics

Typically when we think about individuals and generalisations about them we are thinking within a 
particular universe of discourse. If I say, ‘everyone knows who the Principal is’ I may be right if I 
am talking about current Cave Hill students; but if I was talking about everyone in Barbados or 
everyone in the Caribbean or everyone in the world or everyone in the history of the world, chances 
get less with each extension of the universe of discourse.  Typically we take the quantifiers to range 
over a given universe of discourse.  The universal quantifier says that a predicate holds of every 
individual in the universe of discourse. The existential quantifier says that some predicate holds of 
at least one individual in that universe.

Simple sentences that attach a predicate to one or more names say that the predicate is satisfied by 
the bearers of those names.

Translating from English

There are some standard translation schemata to get from English to first-order logic. When in 
English we talk about all Fs being G, or every F being G, the standard translation goes via the 
paraphrase for all x, if x is F then x is G. So we would write it ∀x(Fx → Gx).2

Some Fs are G is translated via the paraphrase for at least one x, x is F and x is G:∃x(Fx  Gx).∧

Note that in the universal case the quantifier binds a conditional whereas in the existential case the 
quantifier binds a conjunction. Why not the same sort of sentence in both? 

If the existential quantifier binds a conditional we run into problems because a conditional is true 
when its antecedent is false. So, for instance, the false claim there is at least one even positive 
integer not divisible by two would turn out true if we symbolised it by writing ∃x(Px → Dx). Three 
(let a stand for 3) is a positive integer that is not even, so ¬Pa and so ¬Pa  Da is true, but that is ∨
equivalent to (Pa → Da) which is therefore true, and the existential quantifier is true if there is at 

2 Note an immediate consequence of this schema: if there are no Fs the claim is true. The universal generalisation is 
only false if there is an F that is not G.
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least one instance of its being true.

If we took universally quantified statements to be conjunctions we would be saying that everything 
in the domain of discourse is both F and G, but usually we are interested in picking out the Fs from 
a wider group. 

We have to make sure that the domain of discourse doesn’t vary within an inference so it is usually 
best to go for a fairly broad universe..

Just as with our first mini-language there are a good number of English expressions that can be 
captured, with more or less faithfulness, by the machinery we have now introduced.

The word only has a similar effect when it is a quantifier as when it joins with if. Q if P is P → Q, 
while Q only if P is Q → P; similarly all Fs are G is  ∀x(Fx → Gx) while only Fs are G is 
translated   ∀x(Gx →  Fx).

Scope: As Hodges notes, all/any and every often vary in English by reference to their scope. I don’t 
know anything – ∀x( ¬ I know x)  – is different from I don’t know everything – ¬ (∀x( I know x).

You also need to be careful about which variables you use when there is more than one quantifier. 
Hodge’s rule is that no quantifier should occur within the scope of another occurrence of a 
quantifier with the same variable (p. 216). To illustrate, every house has a deep freeze and a colour 
television becomes ∀x( x is a house → (∃y( y is a deep freeze  ∧ x has y)  ∧ ∃y( y is a colour 
television  ∧ x has y))). Note that all the xs are bound by the initial quantifier, but the two existential 
quantifiers only bind the two ys following them, so there is no problem using y for both of them.

Howson illustrates one whole area of possible translations that was originally urged by Davidson as 
a way of capturing obvious entailments with sentences using adverbs. It is clear that Minerva is 
thinking deeply entails Minerva is thinking. One way to capture that using our new language is to 
refer to an event of thinking that is had by Minerva, so we introduce three predicates, T for is a 
process of thinking, D for is deep, and M for is had by Minerva. We can then translate our first 
sentence as ∃x(Tx  ∧ Dx  ∧ Mx). We will see that it is then easy to prove that ∃x(Tx   ∧ Mx) 
follows from it, and that is a translation of our second sentence, Minerva is thinking. You may think 
this is doing some damage to simple English, but it works (and logicians have been taking similar 
liberties for thousands of years).

Tree rules for quantifiers

Just as we used trees to simplify compound statements we can continue to use them in our new 
language by finding ways to get rid of the quantifiers and deal with quantifier-free sentences 
appropriately related to the sentences in the trunk of our tree. (Hodges speaks of the set of 
quantifier-free sentences corresponding to a set X of sentence s as a set of Herbrand sentneces.)

Every quantifier-free sentence in X is a Herbrand sentence. The other Herbrand sentences result 
from dropping the quantifiers.

The ∀xφ rule says if you have a sentence of the form ∀xφ in X and a designator (name) a that 
occurs in X then, if ψ is a matter of replacing every free occurrence of x in φ by a, then X therefore 
ψ is a valid argument.  
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In effect this allows you to instantiate the universal generalisation using any name you have. So if 
you have ∀x(Fx → Gx) and the name a, the sentence Fa → Ga is a Herbrand sentence. [Other 
books make the point that you can introduce a name here too – if something is true of everything in 
the universe of discourse then it is true of any item therein, named already or not.]

The ∃xφ rule says in effect that when you have an existential generalisation you can name an 
instance of it, making sure the name you use hasn’t already been allocated to refer to something 
else. So if you have a sentence of the form ∃xφ in X and a designator (name) a that does not occur 
in X then, if ψ is a matter of replacing every free occurrence of x in φ by a, then you can add ψ to X 
without creating an inconsistency.  

Hodges notes that when you are to use both the quantifier rules it is usually strategically better to 
use the ∃xφ rule first.

Previously we have had to consider not only positive claims but also negative ones. There is a 
convenient equivalence that means we don’t need any new rules for the quantifiers. The quantifiers 
are interdefinable thus: ∃xφ ↔  ¬∀x¬φ ; and ∀xφ  ↔  ¬∃x¬φ, so ¬∀xφ works the same as ∃x¬φ 
and ¬∃xφ works the same as ∀x¬φ.

An illustration

Hodges (p. 208) gives this argument:

Bank-notes all carry a metal strip. Anything with a metal strip can be detected by X-rays. 
Therefore bank-notes can be detected by X-rays.

Let us use the following abbreviations:
B = is a bank-note
M = has a metal strip
D = can be detected by X-rays.

Then our premises are:
∀x(Bx → Mx)
∀x(Mx → Dx)

and the conclusion is:
∀x(Bx → Dx).

The tree here will involve negating the conclusion, ¬(∀x(Bx → Dx)), so we use our rule about 
negated quantifiers to get: ∃x¬(Bx → Dx).

So our tree starts with 
∀x(Bx → Mx)
∀x(Mx → Dx)
∃x¬(Bx → Dx)

Following his advice we start with the existential claim, using any name not already used (there are 
none) and then converting the first two claims to Herbrand sentences:

¬(Bb → Db)
Bb → Mb
Mb → Db
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We then use the rules we already know for propositional trees to show that this set of Herbrand 
sentences yields a closed tree:

Bb
¬Db

|
__________________

¬Bb                                Mb
--------                              |

---------------------------------
¬Mb                                  Db

--------                              -------
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